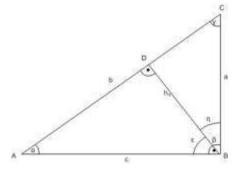
(Stichwörter: Trigonometrie, Oberfläche und Volumen von Zylinder, Prisma und Kegel)

1. Vervollständige die angegebene Tabelle und Verwendung der rechts abgebildeten Skizze.

Dreieck	ABC		ABD		BCD	
Winkel	α	β	α	3	η	γ
Gegenkathete	а	b	h _b	[AD]	[DC]	h _b
Ankathete	С	a	[AD]	h _b	h _b	[DC]
Hypotenuse	b	b	С	С	а	а
Sinus	$\frac{a}{b}$	1	$\frac{h_b}{c}$	$\frac{[AD]}{c}$	$\frac{[DC]}{a}$	$\frac{h_b}{a}$
Cosinus	$\frac{c}{b}$	0	$\frac{[AD]}{c}$	$\frac{h_b}{c}$	$\frac{h_b}{a}$	$\frac{[DC]}{a}$
Tangens	$\frac{a}{c}$	nicht definiert	$\frac{h_b}{[AD]}$	$\frac{[AD]}{h_b}$	$\frac{[DC]}{h_b}$	$\frac{h_b}{[DC]}$



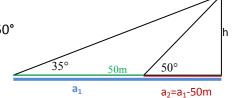
2. Trigonometrie im Alltag!

- a) Es gilt: $\sin 8^\circ = \frac{800m}{g} \rightarrow g$ beträgt ca 5,7 km
- b) Es gilt: 0,08 = $\tan \alpha \rightarrow \alpha \approx 4$,6°; mit sin α = Höhenunterschied / Straßenlänge \rightarrow Höhenunterschied ca 273 m
- c) a_1 bzw. a_2 bezeichne jeweils den Abstand des Fußgängers vom Hochhaus; dann gilt $a_2 = a_1 50$ m. Die Höhe des Hochhauses sei h. Dann gilt tan $35^\circ = \frac{h}{a_1}$ und tan $50^\circ = \frac{h}{a_1 50m}$;

Auflösen nach h und gleichsetzen ergibt: $a_1 \cdot (\tan 35^\circ) = (a_1 - 50m) \tan 50^\circ$

Auflösen nach a_1 ergibt: $a_1 \cdot (\tan 35^\circ - \tan 50^\circ) = -50 \text{m} \cdot \tan 50^\circ$ und damit: $a_1 = 121 \text{m}$.

Daraus folgt h = $a_1 \cdot \tan 35^\circ \approx 85 \text{m}$.



3. Oberfläche von Zylinder, Prisma, Pyramide und Kegel

a) Die benetzte Fläche ergibt sich aus der Summe aus benetzter Grundfläche (Kreisring!), der benetzten Innensowie Außenfläche.

Benetzte Fläche in mm² $\pi (9^2 - 8^2) + 2 \cdot \pi \cdot 8 \cdot 45 + 2 \cdot \pi \cdot 9 \cdot 45 = 1547 \pi \approx 4860 \text{ [mm²]}$

b) Die benötigte Menge Stoff ergibt sich aus der Mantelfläche des Prismas:

Fläche = $6 \cdot 30 \cdot (70 + 2 + 2) \text{ cm}^2 = 13320 \text{ cm}^2 \approx 1,33 \text{ m}^2$

c) Die Höhe eines Seitenflächendreiecks berechnet man mit dem Satz des Pythagoras:

 $h_s^2 = (115 \text{ m})^2 + (146 \text{ m})^2 \rightarrow h_s \approx 185.9 \text{ m};$

daraus ergibt sich die Mantelfläche (vier Dreiecke) M = $4\frac{1}{2} \cdot 230 \text{m} \cdot 185,9 \text{m} \approx 85514 \text{ m}^2$

d) Es entstehen in beiden Fällen Kegel.

Kegel 1: Höhe 3 cm und Radius der Grundfläche 4 cm ; Kegel 2: Höhe 4 cm und Radius der Grundfläche 3 cm

Es ist: Oberfläche Kegel: $r^2 \cdot \pi + r \cdot \pi \cdot m$ wobei m jeweils die Hypotenuse des rotierenden Dreiecks ist. In beiden Fällen ist m = 5

Somit folgt $A_1 = \pi(4^2 + 4 \cdot 5) = 36 \pi$ bzw. $A_2 = \pi(3^2 + 3 \cdot 5) = 24 \pi$. Bei Rotation um die Hypotenuse entsteht ein Doppelkegel.

e) Aus dem Öffnungswinkel 80° ergibt sich die Mantellinie m = $\frac{5 cm}{sin40^{\circ}}$ \approx 7,8 cm. Für die Höhe h folgt:

 $h = = \frac{5 cm}{tan 40^{\circ}} \approx 6.0 \text{ cm}$. Für die Oberfläche des Kegels folgt schließlich: $O = \pi (5^2 + 5 \cdot 7.8) \text{ cm}^2 \approx 201 \text{ cm}^2$

4. Volumen von Zylinder, Prisma, Pyramide und Kegel

a) Die Höhe des Stamms wird mit H bezeichnet.

Das Volumen der Holzstamms beträgt $V_H = r^2 \pi H = (0.25 m)^2 \pi \cdot 8 m \approx 1.57 m^3$.

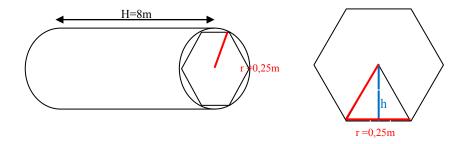
Damit der Balken maximales Volumen hat, muss das Sechseck, das die Grundfläche bildet, die Seitenlänge 25 cm haben (Das regelmäßige Sechseck besteht aus 6 gleichseitigen Dreiecken!).

Damit ergibt sich für die Grundfläche des Balkens

$$h^2 = r^2 - (0.5r)^2 = \frac{3}{4}r^2$$
 und $h = \frac{\sqrt{3}}{2}r$ (≈ 0.217 m)

$$G_{\rm B} = 6 \cdot \frac{1}{2} r \cdot {\rm h} = 6 \cdot \frac{1}{2} r \cdot \frac{\sqrt{3}}{2} r = \frac{3\sqrt{3}}{2} r^2 \approx 0.16 \, m^2 \qquad \text{und somit das Balkenvolumen von V}_{\rm B} = G_{\rm B} \cdot H = 1,28 \, {\rm m}^3.$$

Damit ergibt sich der prozentualer Verlust: $\frac{1,58-1,28}{1,58} \approx 19 \%$



b) Das Volumen der Cheopspyramide ergibt sich zu $V_P = \frac{1}{3} \cdot \cdot (230 \text{ m})^2 \cdot 146 \text{ m} \approx 2\,574\,467 \text{ m}^3$. Daraus folgt für die Masse m = $V_P \cdot \rho$ = 2 574 467 m³ · 2,66 · 10³ kg/m³ = 6,85 · 109 kg = 6,85 · 106 t (Tonnen).