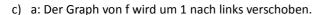
(Stichwörter: Exponentialfunktion, Exponentialgleichung, Definition des Logarithmus, Rechenregeln)

Aufgabe 1: Graphen der Exponentialfunktionen

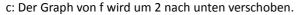
a) Der Graph von f ist eine Gerade mit der Steigung 2 und dem y-Achsenabschnitt -2. (grün)

Der Graph von g ist eine Normalparabel, die um 2 nach rechts verschoben wurde. Der Scheitel liegt daher bei (2/0), sie ist nach oben geöffnet. (rot)

h ist eine Exponentialfunktion mit der Basis 2: ihr Graph erläuft stets oberhalb der x-Achse und schneidet die y-Achse bei (0/1); er ist immer steigend. Für $x \rightarrow -\infty$ nähert sich der Graph G_h der x-Achse an und für $x \rightarrow +\infty$ werden die Funktionswerte unendlich groß. (blau)

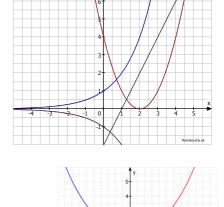


b: Der Graph von f wird um 2 gestreckt (jeder Funktionswert wird verdoppelt. Das entspricht bei der Exponentialfunktion der Verschiebung nach links. $2^{x+1} = 2 \cdot 2^x$



d: Der Graph von f wird an der y-Achse gespiegelt.

e: Der Graph von f wird um 3 nach rechts verschoben.



d) (I) A(1/2), B(3/128)
$$y = c \cdot a^x$$
 A einsetzen:
$$2 = c \cdot a^1 \quad \text{somit ist } c = \frac{2}{a}$$
 B einsetzen:
$$128 = \frac{2}{a} \cdot a^3 \quad \text{I : 2}$$

$$64 = a^2 \qquad \text{I} \sqrt[3]{}$$

$$a = 8 \quad \text{und somit} \qquad f(x) = \frac{1}{4} \cdot 8^x$$

(II) A(2/-25,2), B(5/-680,4)
$$y = c \cdot a^x$$

A einsetzen und nach c auflösen: $-25,2=c\cdot a^2$ $c=-\frac{25,2}{a^2}$ B einsetzen und nach c auflösen: $-680,4=c\cdot a^5$ $c=-\frac{680,4}{a^5}$ Gleichsetzen: $-\frac{25,2}{a^2}=-\frac{680,4}{a^5}$ I $\cdot a^5$:(-25,2) $a^3=27$ I $\sqrt[3]{}$

Daraus folgt: a = 3; $c = -\frac{25,2}{3^2} = -2,8$ und somit $f(x) = -2,8 \cdot 3^x$

Aufgabe 2: Logarithmus und Exponentialgleichungen

- a) Mögliche Erklärungen:
 - Der Logarithmus logab gibt die Zahl an, mit der a potenziert werden muss, um b zu erhalten.
 - Der Logarithmus löst die Frage nach dem Exponenten: $a^x = b \iff x = \log_a b$ Nach der Basis a würde man mit Potenzieren/Wurzelziehen antworten: $a^x = b \iff a = \sqrt[x]{b}$
 - Hierbei gilt stets: $a, b \in \mathbb{R}^+$ und $a \neq 1$.
- b) Bestimme x (ohne TR):

(I)
$$0.001^{x} = 0.1$$
 \Leftrightarrow $x = \log_{0.001} 0.1 = \log_{0.001} \left(0.001^{\frac{1}{3}} \right) = \frac{1}{3} \cdot \log_{0.001} (0.001) = \frac{1}{3}$
(II) $1.4^{x} = 1.96$ \Leftrightarrow $x = \log_{1.4} 1.96 = \log_{1.4} (1.4^{2}) = 2$
(III) $5^{x} = \frac{1}{625}$ \Leftrightarrow $x = \log_{5} \frac{1}{625} = \log_{5} 625^{-1} = \log_{5} (5^{4})^{-1} = \log_{5} (5^{-4}) = -4 \cdot \log_{5} (5) = -4 \cdot 1 = -4$
(IV) $x^{5} = 23$ \Leftrightarrow $x = \sqrt[5]{23}$

c) Bestimme die Zahl a ohne Verwendung des TR, die folgende Gleichung erfüllt:

(I)
$$\log_a(16) = 2$$
 \Leftrightarrow $a^2 = 16$ und damit $a = 4$ (a ist immer positiv, darum ist -4 keine Lösung)

(II)
$$\log_a(0.5) = 4$$
 \Leftrightarrow $a^4 = 0.5$ \Leftrightarrow $a = \sqrt[4]{0.5} (\approx 0.84...)$

(III)
$$\log_a(-9) = 2$$
 es gibt keine solche Basis a. (\Leftrightarrow a² = -9!!!)

(IV)
$$\log_a(16) = 0$$
 es gibt keine solche Basis a, nur $\log_a(1) = 0$!

d) Vereinfache durch Anwendung der Rechengesetze ohne Verwendung des TR:

(I)
$$\log_3(9^{-11}) + \log_{11}(\sqrt{11}) - \log_{5,8}(1) + \log_{216}(\frac{1}{36}) = \log_3(3^{-22}) + \log_{11}(11^{\frac{1}{2}}) - 0 + \log_{6^3}(6^{-2}) =$$

= $-22 + \frac{1}{2} - 0 + \log_{6^3}(6^3)^{-\frac{2}{3}} = -22 + \frac{1}{2} - 0 - \frac{2}{3} = -22 \frac{1}{6}$

(II)
$$\log_{0.25}(7) - \log_{0.25}(16) + \log_3\left(\frac{1}{27}\right) - \log_{\frac{1}{4}}(7) = \log_{0.25}\left(\frac{7}{16\cdot7}\right) + \log_3(3^{-3}) = \log_{0.25}\left(\frac{1}{16}\right) - 3 = \log_{\frac{1}{4}}\left(\frac{1}{4}\right)^2 - 3 = 2 - 3 = -1$$

e) Bestimme die Lösungen der Gleichung. (nicht so einfach, zugegeben...)

(I) 5 ^{2x-1} = 125	(II) $2^{2x} = 7^{x-1}$	$(III) 3^{2x} - 4 \cdot 3^x + 3 = 0$
	beidseitiges Logarithmieren	Substitution!
$2x - 1 = \log_5(125)$	$lg(2^{2x}) = lg(7^{x-1})$ $2x \cdot lg2 = (x-1) \cdot lg7$	$3^{2x} - 4 \cdot 3^{x} + 3 = 0$ ersetze: $a = 3^{x}$ $a^{2} - 4a + 3 = 0$
$2x - 1 = 3 \Leftrightarrow x = 2; L = \{2\}$	2x·lg2= x·lg7 - lg7 2x·lg2 - x·lg7 = - lg7	hat die Lösungen $a_1 = 1$ und $a_2 = 3$
Hier geht's auch ohne log direkt: $5^{2x-1} = 125$ $5^{2x-1} = 5^3 \Leftrightarrow 2x - 1 = 3 \Leftrightarrow x = 2$	x (2lg2 - lg7)= - lg7 x = $\frac{-lg7}{2lg2-lg7}$	Rückübersetzung: $1 = 3^x$ oder $3 = 3^x$ $x = 0$ oder $x = 1$ $L = \{1; 3\}$
	Oder: $4^x = 7^x \cdot \frac{1}{7}$ $7 = \left(\frac{7}{4}\right)^x$ $x = \log_{\frac{7}{4}}(7)$	

Aufgabe 3: Wachstum

a) f (x) = $4 \cdot 2.5^x$ exponentielles Wachstum

b) $g(x) = 28 -$	4,5x	
lineares (ı	negatives)	Wachstum

c) $h(x) = 120.0,8^x$ exponentielles (negatives) Wachstum

X	0	1	2	3	4	10	20
g(x)	28	23,5	19	14,5	10	- 17	- 62

X	0	1	2	3	4	10	20
f(x)	4	10	25	62,5	156,25	≈ 38147	$\approx 3,638 \cdot 10^{8}$

x	0	1	2	3	4	10	20
h(x)	120	96	76,8	61,44	49,152	12,8849	1,3835

Aufgabe 4: Radioaktiver Zerfall

a) $M(t) = M_0 \cdot \left(\frac{1}{2}\right)^{\frac{t}{8,0d}} = M_0 \cdot 2^{-\frac{t}{8,0d}}$ mit $M_0 = 400$ g und t Anzahl der Tage (Einheit Tag Abkürzung d)

b) M(1d) = $M_0 \cdot \left(\frac{1}{2}\right)^{\frac{1d}{8,0d}} \approx 0.92 \, M_0 \, also \, 92\% \, der \, Ausgangsmasse$

 $M(30d) = M_0 \cdot \left(\frac{1}{2}\right)^{\frac{30d}{8,0d}} \approx 0.74 \,M_0 \,\text{also } 7.4\% \,\text{der Ausgangsmasse}$ davon ausgehend: 1 Monat hat 30 Tage

c) M(t) = 1 mg = 0,001g; 0,001 g = 400g $\cdot 2^{-\frac{t}{8,0d}} \Leftrightarrow 2,5 \cdot 10^{-6} = 2^{-\frac{t}{8,0d}} \Leftrightarrow \log_2(2,5 \cdot 10^{-6}) = -\frac{t}{8,0d}$ t = -8,0d $\cdot \log_2(2,5 \cdot 10^{-6}) \approx 148,877...d \approx 149 d$

Aufgabe 5: Zinsen

a) t bezeichnet die Zeit in Jahren (a)

K(t) = K₀· 1,025
$$\frac{t}{1a}$$
 also K(1a) = 500€ · 1,025¹ = 512,50€; K(2a) = 500€ · 1,025² = 525,31€; K(5a) = 500€ · 1,025⁵ = 565,70€; K(10a) = 500€ · 1,025¹⁰ = 640,04€;

b) Verdopplung: K(t) = 2 K₀; 2 K₀ = K₀· 1,025 $\frac{t}{1a}$ \Leftrightarrow 2 = 1,025 $\frac{t}{1a}$ \Leftrightarrow $\frac{t}{1a} = \log_{1,025} 2$ \Leftrightarrow t \approx 28,1 a Verzehnfachung: K(t) = 10 K₀; 10 K₀ = K₀· 1,025 $\frac{t}{1a}$ \Leftrightarrow 10 = 1,025 $\frac{t}{1a}$ \Leftrightarrow $\frac{t}{1a} = \log_{1,025} 10$ \Leftrightarrow t \approx 93,2 a

c) t weiterhin in Jahren: $K(t) = 500 \cdot 1,0125 \frac{2}{10}$ $K(1a) = 500 \cdot 1,0125^2 = 512,58 \cdot K(2a) = 500 \cdot 1,0125^4 = 525,47 \cdot E$ $K(5a) = 500 \cdot 1,0125^{10} = 566,16 \cdot K(10a) = 500 \cdot 1,0125^{20} = 641,02 \cdot E$ (Ergebnisse wurden aufgerundet)