

Mathematik am Peutinger-Gymnasium

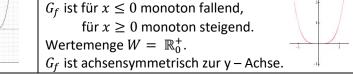
Fkt 5

Grundwissen

Potenzfunktionen (Jgst. 9)

$$f(x) = x^n \text{ mit } n \in \mathbb{N}.$$

n ungerade


 G_f ist monoton steigend.

Wertemenge $W = \mathbb{R}$.

 G_f ist punktsymmetrisch zum Ursprung.

n gerade

Verschiebung und Strecken von G_f :

$$f(x) = \mathbf{a}(x+\mathbf{d})^n + \mathbf{e} \text{ mit } n \in \mathbb{N} \text{ und } a, d, e \in \mathbb{R}.$$

Streckung/ Stauchung in y - Richtung

- a > 1: Die y-Werte werden mit a multipliziert -> Graph mit Faktor |a| in y – Richtung gestreckt.
- a < 1: Graph mit Faktor |a| in y – Richtung gestaucht.

Spiegelung an der x -Achse

a < 0: Graph an der x – Achse

für **d > 0**:

Verschiebung um d Einheiten in die negative x – Richtung. (nach links) für **d < 0**:

Verschiebung um |d| Einheiten in die positive x – Richtung. (nach rechts)

für **e > 0**:

Verschiebung um e Einheiten in die positive y – Richtung. für **e < 0**:

Verschiebung um |e| Einheiten in die negative y – Richtung.

Hinweis: |a| bedeutet "Betrag von a". Dieser ist entweder 0 oder positiv. Bsp.: |2| = 2 und |-2| = 2

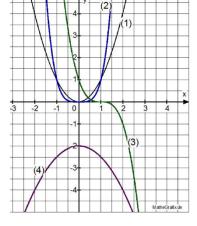
Aufgaben:

1) Ordnen Sie den Graphen eine der angegebenen Funktionsgleichungen zu. Begründen Sie Ihre Entscheidung!

i)
$$y = -0.5x^2 - 2$$

ii)
$$y = (x-2)^2 \cdot \frac{1}{2}$$

iii)
$$y = -(x-1)^3$$


iv)
$$y = x^4$$

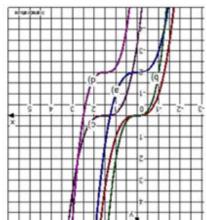
v)
$$y = x^2$$

vi)
$$y = -(x+1)^3$$

vii)
$$y = (x - 1)^3$$

viii)
$$y = (x - 1)^3$$

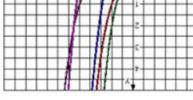
- xi) $y = x^5$ x) $y = -2 + \frac{1}{2}x^2$
- **2)** Gegeben ist die Potenzfunktion $f(x) = ax^n$ mit $a \in \mathbb{R} \setminus \{0\}$ und $n \in \mathbb{N}$. Der Graph G_f von f ist punktsymmetrisch zum Ursprung und verläuft durch den Punkt P(1|-1). Erläutern Sie, welche Aussagen über a und n aufgrund der vorgegebenen Informationen getroffen werden können.
- 3) a) Zeichnen Sie den Graphen der Funktion $f(x) = x^3$ in ein Koordinatensystem. b) Skizzieren Sie (ohne weitere Berechnungen) mit verschiedenen Farben die Graphen der Funktionen mit folgenden Funktionstermen:


i)
$$f_1(x) = x^3 - 2$$

ii)
$$f_2(x) = 2x^3$$

iii)
$$f_3(x) = (x - 1.5)^3$$

i)
$$f_1(x) = x^3 - 2$$
 ii) $f_2(x) = 2x^3$ iii) $f_3(x) = (x - 1.5)^3$ iv) $f_4(x) = 2(x - 1.5)^3 - 2$


Lösungen:

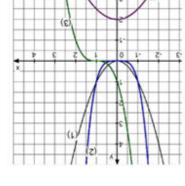
n ungerade sein muss. aus der Punktsymmetrie folgt weiterhin, dass $(1-1)^n = -1$, $a \cdot b \cdot (1-1) \in G_f$, $a \cdot b \cdot a \cdot 1^n = -1$;

a) Graph von f1

q) Quabh von ft c) graph von f3 p) Graph von f2

→ 1: Normalparabel mit Scheitel im Ursprung

kann ix) ausgeschlossen werden. Achse. Außerdem gilt 1,5 $^+$ \approx 5,06 and 1,5 6 \approx 11,39. Deshalb iv) $y=x^{4}$ \Rightarrow 2: Die Funktionswerte für $x\in]0;$ 1[liegen näher an der x-Achse als bei


gespiegelter Graph der x^3 – Funktion.

→ 3: Um 1 nach rechts verschobener und an der x-Achse

$$\varepsilon(1-x) - = \chi(iii)$$

geoffnete Parabel, die mit dem Faktor 0,5 in y-Richtung gestaucht ist. → 4: Um 2 Einheiten in negative y-Richtung verschobene, nach unten

$$S - 2xS_i O - = V(i)$$

