

Fkt 10

Grundwissen

Eigenschaften von Funktionen (Jgst. 11)

Symmetrie

Der Graph einer Funktion f ist **achsensymmetrisch zur y-Achse**, wenn f(-x) = f(x) für alle $x \in D_f$ Die Funktion f heißt dann gerade Funktion.

Der Graph einer Funktion f ist punktsymmetrisch zum Ursprung des Koordinatensystems, wenn f(-x) = -f(x) für alle $x \in D_f$. Die Funktion f heißt dann ungerade Funktion.

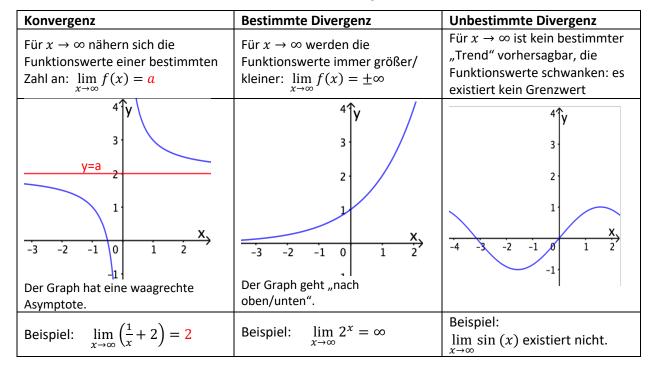
Bei ganzrationalen Funktionen lässt sich die Symmetrie des Graphen anhand der vorkommenden Exponenten des Terms ablesen (siehe auch Grundwissensblatt Fkt 09).

Beispiel:

$$g(x)=x^3\cos(x)$$
: $g(-x)=(-x)^3\cos(-x)=-x^3\cos(x)=-g(x)$. Daher ist der Graph von g punktsymmetrisch zum Ursprung.

Grenzwerte für $x \to \pm \infty$

Wir unterscheiden drei Arten, wie sich Funktionen für sehr große bzw. sehr kleine x-Werte verhalten:



Bei gebrochen-rationalen Funktionen mit dem Term $f(x) = \frac{p(x)}{q(x)}$ (p und q sind Polynome vom Zählergrad z bzw. Nennergrad n) kann das Verhalten im Unendlichen anhand der Grade von Zähler- bzw. Nennerpolynom bestimmt werden:

Konvergenz		Bestimmte Divergenz	
z < n	z = n	z = n + 1	z > n+1
$\lim_{x \to \infty} \left(\frac{x}{x^2 - 1} \right) = 0$	$\lim_{x \to \infty} \left(\frac{2x^2}{3x^2 - 1} \right) = \frac{2}{3}$	$\lim_{x \to \pm \infty} \left(\frac{2x^2 + 2}{x - 4} \right) = \pm \infty$	$\lim_{x \to \pm \infty} \left(\frac{2x^4 + 2}{x - 4} \right) = \pm \infty$
Die Funktionswerte nähern sich 0 bzw. $\frac{2}{3}$ an. Der zugehörige Graph hat eine waagrechte Asymptote.		Die Funktionswerte werden immer größer. Der zugehörige Graph hat eine schräge Asymptote.	Die Funktionswerte werden immer größer.

Einfluss von Parametern auf den Funktionsgraphen

	T	
f(x) + d	Der Graph von f wird um d entlang der positiven y-Achse verschoben.	
$a \cdot f(x)$	Der Graph von f wird mit dem Faktor $ a $ in Richtung y-Achse gestreckt. Ist $a < 0$, so wird er zudem an der x-Achse gespiegelt.	
f(x+c)	Der Graph von f wird um $-c$ entlang der positiven x-Achse verschoben.	
$f(b \cdot x)$	Der Graph von f wird mit dem Faktor $\left \frac{1}{b}\right $ in Richtung x-Achse gestreckt. Ist b< 0, so	
	er wird zudem an der y-Achse gespiegelt.	

$$g(x) = a \cdot f(b \cdot (x+c)) + d$$

Achtung: Bei einer Kombination von Transformationen muss darauf geachtet werden, dass Streckungen und Spiegelungen vor den Verschiebungen ausgeführt werden müssen!

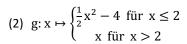
Beispiel
$$g(x) = 1.5 \cdot f\left(-\frac{1}{2} \cdot (x-3)\right) + 4$$

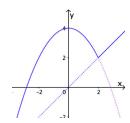
Beispiel $g(x)=1.5\cdot f\left(-\frac{1}{2}\cdot(x-3)\right)+4$ G_g entsteht aus G_f durch Streckung mit dem Faktor 2 in x-Richtung, Spiegelung an der y-Achse und Streckung mit dem Faktor 1,5 in y-Richtung. Anschließend wird um 3 in positive x-Richtung und 4 in positive y-Richtung verschoben.

Stetigkeit

Eine Funktion, deren Graph in einem Intervall I gezeichnet werden kann, ohne den Stift abzusetzen, heißt stetig auf dem Intervall I. Alle bekannten Funktionstypen sind stetig auf ihrem Definitionsbereich. Interessant sind beispielsweise die Nahtstellen abschnittsweise definierter Funktionen.

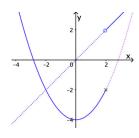
(1) f: x
$$\mapsto$$
 $\begin{cases} 4 - \frac{1}{2}x^2 & \text{für } x \le 2 \\ x & \text{für } x > 2 \end{cases}$





An der Stelle x = 2 ist f stetig, da die Graphen der Teilstücke nahtlos ineinander übergehen:

$$f(2) = 4 - \frac{1}{2} \cdot 2^2 = 2$$
und $\lim_{x \to 2+} f(x) = 2$



An der Stelle x = 2 ist g nicht stetig, da die Teilstücke des Graphen nicht aufeinander -

$$g(2) = \frac{1}{2} \cdot 2^2 - 4 = -2$$

und $\lim_{x \to 2+} g(x) = 2$

Aufgaben:

1. Untersuchen Sie rechnerisch, ob die Graphen der gegebenen Funktionen eine Symmetrie zum Koordinatensystem aufweisen.

a)
$$a(x) = -3x^4 \cdot \sin(x)$$

b)
$$b(x) = \frac{2^x + 0.5^x}{1}$$

a)
$$a(x) = -3x^4 \cdot \sin(x)$$
 b) $b(x) = \frac{2^x + 0.5^x}{4}$ c) $c(x) = 2x^4 - 2x^2 + 1$ d) $d(x) = 2x^3 - x + 1$

d)
$$d(x) = 2x^{\frac{1}{3}} - x + 1$$

2. Geben Sie die Grenzwerte für $x \to -\infty$ und $x \to +\infty$ an.

a)
$$a(x) = -3x^{3}$$

b)
$$b(x) = -0.5^x + 1$$

c)
$$c(x) = \frac{3x}{x^2 - 1}$$

a)
$$a(x) = -3x^3$$
 b) $b(x) = -0.5^x + 1$ c) $c(x) = \frac{3x}{x^2 - 1}$ d) $d(x) = \frac{6(x - 1)^2}{1 - 3x^2}$

3. Gegeben ist der Graph der Funktion f mit $f(x) = x^2$. Beschreiben Sie, wie der Graph von g aus dem Graphen von f entsteht und bestimmen Sie den Term von g.

$$a) g(x) = 4f(-x)$$

b)
$$g(x) = -f(x-3) + 2$$

c)
$$g(x) = -(f(x-3) + 2)$$

d)
$$g(x) = f(3(x+1)) +$$

e)
$$g(x) = f(3x - 1) + 2$$

a)
$$g(x) = 4f(-x)$$
 b) $g(x) = -f(x-3) + 2$ c) $g(x) = -(f(x-3) + 2)$ d) $g(x) = f(3(x+1)) + 2$ e) $g(x) = f(3x-1) + 2$ f) $g(x) = \frac{1}{2}f(\frac{1}{4}(x+1)) - 1$

4. Bestimmen Sie b so, dass die Funktion f an der Nahtstelle ihrer beiden Äste stetig ist.

$$f(x) = \begin{cases} x^2 + b & \text{für } x \le -1\\ 0.5x + 1 & \text{für } x > -1 \end{cases}$$

Lösungen:

1. a)
$$a(-x) = -3(-x)^4 \cdot \sin(-x) = -3x^4 \cdot (-\sin(x)) = 3x^4 \cdot \sin(x) = -a(x)$$
 p.s.

b)
$$b(-x) = \frac{2^{-x} + 0.5^{-x}}{4} = \frac{0.5^{x} + 2^{x}}{4} = \frac{2^{x} + 0.5^{x}}{4} = b(x)$$
 a.s.

c)
$$c(-x) = 2(-x)^4 - 2(-x)^2 + 1 = 2x^4 - 2x^2 + 1 = c(x)$$
 a.s.

d)
$$d(-x) = 2(-x)^3 - (-x) + 1 = -2x^3 + x + 1 \neq -d(x)$$
 keine Symmetrie zum KOSY

2. a)
$$\lim_{x \to -\infty} (-3x^3) = \infty$$
 $\lim_{x \to \infty} (-3x^3) = -\infty$ b) $\lim_{x \to -\infty} (-0.5^x + 1) = -\infty$ $\lim_{x \to \infty} (-0.5^x + 1) = 1$

- $3. G_g$ entsteht aus G_f durch
 - a) Streckung in y-Richtung mit dem Faktor 4 und Spiegelung an der y-Achse.
 - b) Spiegelung an der x-Achse und anschließende Verschiebung um 3 in positive x-Richtung und um 2 in positive y-Richtung.
 - c) Verschiebung um 3 in positive x-Richtung und um 2 in positive y-Richtung und anschließende Spiegelung an der x-Achse
 - d) Streckung in x-Richtung mit dem Faktor $\frac{1}{2}$ und anschließende Verschiebung um 1 in negative x-Richtung und um 2 in positive y-Richtung.
 - e) Verschiebung um 1 in positive x-Richtung, Streckung in x-Richtung mit dem Faktor $\frac{1}{2}$ und anschließende und Verschiebung um 2 in positive y-Richtung. Anm.: Hier ist eine andere Reihenfolge notwendig, wenn nicht vorher 3 ausgeklammert wird.

Alternativ: Streckung in x-Richtung mit dem Faktor $\frac{1}{3}$ und anschließende Verschiebung um $\frac{1}{3}$ in positive x-Richtung und um 2 in positive y-Richtung: $g(x) = f\left(3\left(x - \frac{1}{3}\right)\right) + 2$

f) Streckung in y-Richtung mit dem Faktor $\frac{1}{2}$, Streckung in x-Richtung mit dem Faktor 4 und anschließende Verschiebung um 1 in negative x-Richtung und um 1 in negative y-Richtung.

Terme:

a)
$$g(x) = 4(-x)^2 = 4x^2$$

d)
$$q(x) = 9(x+1)^2 + 3$$

b)
$$g(x) = -(x-3)^2 + 2$$

e)
$$g(x) = 9\left(x - \frac{1}{3}\right)^2 + 2$$

c)
$$g(x) = -((x-3)^2 + 2) = -(x-3)^2 - 2$$

c)
$$g(x) = -((x-3)^2 + 2) = -(x-3)^2 - 2$$
 f) $g(x) = \frac{1}{2} \left(\frac{1}{4}(x+1)\right)^2 - 1 = \frac{1}{32}(x+1)^2 - 1$

4. linker Ast:
$$f(-1) = (-1)^2 + b = 1 + b$$
; rechter Ast: $0.5 \cdot (-1) + 1 = 0.5$

$$f(x) = \begin{cases} x^2 + b & \text{für } x \le -1\\ 0.5x + 1 & \text{für } x > -1 \end{cases}$$

$$1 + b = 0.5 \iff b = -0.5$$